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FLOW ASYMPTOTICS OF A VISCOUS COMPRESSIBLE FLUID

WITH DISCONTINUOUS INITIAL DATA

UDC 532.526:532.516A. B. Usov

Asymptotics of a continuous solution to a plane problem on the motion of a viscous incompressible
fluid with discontinuous initial velocity and pressure fields is studied by the boundary-layer method
with simultaneous stretching of space and time coordinates.
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Introduction. The problem on a viscous compressible fluid flow with discontinuous initial data was ex-
tensively studied [1–7], but these investigations were based on various simplifying hypotheses, e.g., the absence of
nonlinear convective terms in equations of viscous fluid motion was assumed [5]. The boundary-layer method [8]
has not been applied to study this problem in the general statement. The boundary-layer method suggested in [9]
with simultaneous stretching of space and time coordinates made it possible to construct the asymptotics of the
problem solution on a very short time scale without any additional assumptions.

1. Formulation of the Problem. Let a viscous barotropic fluid occupy all the space in the absence of
external forces. At the initial time, fields of perturbations of the dimensionless velocity vector (v) and the density (ρ)
of the fluid are specified, which are discontinuous on the convex surface Γ0 dividing the entire fluid into the domains
R0 and Q0 (Fig. 1):

R0: v = v+, ρ = ρ+ for t = 0; Q0: v = 0, ρ = 0 for t = 0. (1.1)

The functions v+ and ρ+ are given (v+|Γ0 6= 0 and ρ+|Γ0 > 0).
Conditions (1.1) generate a compression wave propagating in the fluid at t > 0, and the velocity vector

and pressure have a weak discontinuity on passing through this wave [1], i.e., there occur discontinuities in space
derivatives of the components of the fluid velocity vector and in pressure. The shock front Γt divides the entire fluid
into the domains Rt and Qt, which are time-dependent, because the compression wave moves in the fluid (Fig. 1).

The problem is studied in the plane formulation. A moving orthogonal system of coordinates Oyϕ rigidly
fitted to the curve Γt is introduced (O is an arbitrary point on Γt, y is the distance from the point to the curve Γt
along the inner normal, and ϕ is the length of the arc along Γt counted clockwise).

Absolute isothermal motion of the fluid in the coordinate system Oyϕ in the domains Rt and Qt in the
absence of external forces is described by a system of dimensionless Navier–Stokes equations [1, 4] including the
equation of continuity

∂ρ

∂t
− c ∂ρ

∂y
+ div [(ρ+ ρ∗)v] = 0, (1.2)

the equations of fluid motion in the coordinate system Oyϕ
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(1.3)
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Fig. 1
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and the equation of state

p = Dρ. (1.4)

Here v = (vy, vϕ) is the vector of perturbations of the dimensionless absolute velocity of the fluid particles in
Oyϕ, c(ϕ, t) is the dimensionless displacement velocity of the curve Γt, p is the perturbation of dimensionless
hydrodynamic pressure, ρ is the perturbation of dimensionless fluid density, ρ∗ is the dimensionless fluid density
in the unperturbed state, Re = ρ′v′l′/µ′ is the Reynolds number, ρ′, v′, and l′ are the characteristic values of
density, velocity, and length, respectively, which can be taken as the dimensional fluid density, the module of the
fluid velocity vector at the initial time in the domain R0, and the width of the domain R0, µ′ is the dynamic
molecular viscosity of the fluid (µ′ � 1), D = D′/(v′)2, where D′ is the squared of velocity of sound in the fluid,
H1 = 1 + y/æ(ϕ) is the Lamé coefficient of the coordinate system Oyϕ, and æ(ϕ) is the radius of curvature of Γt.
It is assumed that the Reynolds number is independent of the Mach number [M 2 = (v′)2/D′].

Equations (1.2)–(1.4) are considered with the initial conditions (1.1), conditions at infinity, and conditions
on the shock wave (for y = 0), which moves in the fluid at a velocity c(ϕ, t) [1, 8]:

[vϕ] = 0, [vy] = 0,
[
− p+

4
3 Re

∂vy
∂y

]
= 0,

[∂vϕ
∂y

]
= 0, c = vy. (1.5)

Here [f ] = lim
y→0, y∈Rt

f(ϕ, y, t)− lim
y→0, y∈Qt

f(ϕ, y, t) is the jump of the function f on passing the curve Γt.

The boundary-layer method [8] is used to construct asymptotic expansions of the solution of problem (1.1)–
(1.5).

2. Constructing the Functions of the First Iteration Process. The problem solution is sought as
analytic functions of the small parameter ε (ε = 1/

√
Re), i.e., in the form of the Taylor power series in ε:

v = v(0) = (v(0)
y , v(0)

ϕ ), v(0)
ϕ =

N∑
i=0

εibi(y, ϕ, t), v(0)
y =

N∑
i=0

εiai(y, ϕ, t),
(2.1)

ρ = ρ(0) =
N∑
i=0

εiρi(y, ϕ, t), p = Dρ, c = c(0) =
N∑
i=0

εic
(0)
i (ϕ, t).

The functions ai, bi, c
(0)
i , and ρi (i = 0, 1, . . . , N) are called the functions of the first iteration process. By

substituting series (2.1) into Eqs. (1.2)–(1.4), we obtain Euler equations of an ideal barotropic fluid for determining
the functions of the first iteration process. For an ideal compressible fluid, the boundary conditions at the shock
wave under the initial conditions (1.1) have the form [1]

[(ρ+ ρ∗)(vy − c)] = 0, [(ρ+ ρ∗)vy(vy − c) + p] = 0, [vϕ] = 0 (2.2)
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and cannot satisfy all the conditions (1.5). It is assumed that boundary conditions (2.2) and initial conditions (1.1)
are consistent, i.e., conditions (2.2) are fulfilled for t = 0. In the opposite case, the initial discontinuity in the ideal
fluid decays. Therefore, at y = 0, the following equalities hold true:

c(0, ϕ) = v+
y (0, ϕ)(ρ+(0, ϕ) + ρ∗)/ρ+(0, ϕ),

(2.3)
(ρ+(0, ϕ) + ρ∗)v+

y (0, ϕ)(v+
y (0, ϕ)− c(0, ϕ)) +Dρ+(0, ϕ) = 0, v+

ϕ (0, ϕ) = 0.

Here v+ = (v+
y , v

+
ϕ ).

Seeking the solution of problem (1.1)–(1.5) as series (2.1), it is impossible to satisfy all the conditions (1.5).
Near the surface Γt, a thin fluid layer is formed (internal boundary layer [4, 5]) where a drastic change in fluid velocity
and pressure is observed. The processes in the boundary layer are described by the boundary-layer functions.

3. Construction of the Boundary-Layer Functions. The solution of problem (1.1)–(1.5) is sought in
the form [8]

v = v(0) + v(1) + v(2), ρ = ρ(0) + ρ(1) + ρ(2),

p = p(0) + p(1) + p(2), c = c(0) + c(1), p(k) = Dρ(k), k = 0, 1, 2,

v(1)
y =

N∑
i=N1

εih
(1)
i (s, ϕ, τ), v(2)

y =
N∑

i=N1

εih
(2)
i (s, ϕ, τ), (3.1)

v(1)
ϕ =

N∑
i=N2

εig
(1)
i (s, ϕ, τ), v(2)

ϕ =
N∑

i=N2

εig
(2)
i (s, ϕ, τ),

ρ(1) =
N∑

i=N3

εiα
(1)
i (s, ϕ, τ), ρ(2) =

N∑
i=N3

εiα
(2)
i (s, ϕ, τ), c(1) =

N∑
i=N4

εic
(1)
i (ϕ, τ).

The constants N1, . . . , N4 are found in the process of constructing the boundary-layer functions. The functions v(0),
ρ(0), p(0), and c(0) are the functions of the first iteration process and have a strong discontinuity at the surface Γt.
The functions g(m)

i , h(m)
i , c(1)

i , and α(m)
i (m = 1, 2) are called the functions of the second iteration process (functions

of the internal boundary layer in a viscous fluid). We assume that the boundary-layer functions, unlike [4–8], depend
on two stretched variables s = y/εk1 and τ = t/εk2 (k1, k2 = const). The boundary-layer functions are determined
in the vicinity of the curve Γt on its opposite sides (in the regions Rt and Qt) and secure the continuity of the
viscous fluid flow on passing through Γt.

By reasoning similar to [9] and discarding the requirement to conserve the divergence of the velocity vector
in every approximation, we obtain the following variants of boundary-layer stretching:

k1 = 1 + 0.5k2, k2 > 2, N1 = 0, N2 = k2, N3 = −k1 + k2, N4 = N1; (3.2)

k1 = 2, k2 = 2, N1 = 0, N2 = 2, N3 = 0, N4 = 0. (3.3)

The solution of problem (1.1)–(1.5) is unique [1]; therefore, the parameters of boundary-layer stretching specified
by formulas (3.2) and (3.3) lead to different representations of the same asymptotics of the problem solution. The
equivalence of these representations on short time scales is proved in a similar way [9]. It is impossible to construct
functions of the internal boundary layer by the boundary-layer method [8] without stretching the time (k2 = 0) and
without making additional assumptions. For k2 6= 0, the internal boundary layer can be constructed without any
additional assumptions.

Let us construct a boundary layer for the case

k1 = 3, k2 = 4, N1 = 0, N2 = 4, N3 = 1, N4 = 1.

The solution of problem (1.1)–(1.5) is sought in the form of series (3.1). In an ideal fluid, there is a shock-wave
front producing a strong discontinuity; in a viscous fluid, this discontinuity is smoothed by dissipation forces. We
substitute series (3.1) into Eqs. (1.2) and (1.3) and take into account the results of the first iteration process: the
functions of this process satisfy homogeneous (in the basic approximation) and inhomogeneous (in the subsequent
approximations) Euler equations of an ideal compressible fluid. In the resulting equations, we expand the functions
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depending on the “slow” time t = τε4 and the variable y = sε3 in terms of the Taylor series at the points t = 0 and
y = 0. Arranging coefficients of similar powers of ε, we obtain the boundary-layer equations.

In the basic approximation, the boundary-layer equations have the form

∂g
(1)
4

∂τ
− h(1)

0

∂c
(0)
0

∂ϕ

∣∣∣
t=0

+ (h(1)
0 − c

(1)
0 )

∂v+
ϕ

∂y

∣∣∣
y=0
− (h(1)

0 + v+
y

∣∣∣
y=0

)
∂c

(1)
0

∂ϕ
=

1
ρ∗ + ρ+|y=0

∂2g
(1)
4

∂s2
,

∂g
(2)
4

∂τ
− h(2)

0

[∂c(0)
0

∂ϕ

∣∣∣
t=0

+
∂c

(1)
0

∂ϕ

]
=

1
ρ∗

∂2g
(2)
4

∂s2
,

(3.4)

∂h
(1)
0

∂τ
=

4
3(ρ∗ + ρ+|y=0)

∂2h
(1)
0

∂s2
,

∂h
(2)
0

∂τ
=

4
3ρ∗

∂2h
(2)
0

∂s2
,

∂α
(1)
1

∂τ
+ (ρ+

∣∣∣
y=0

+ ρ∗)
∂h

(1)
0

∂s
= 0,

∂α
(2)
1

∂τ
+ ρ∗

∂h
(2)
0

∂s
= 0,

and in the subsequent approximations, they become (k = 5, 6, . . . , N)

∂g
(1)
k

∂τ
− h(1)

k−4

∂c
(0)
0

∂ϕ

∣∣∣
t=0

+ (h(1)
k−4 − c

(1)
k−4)

∂v+
ϕ

∂y

∣∣∣
y=0
− h(1)

0

∂c
(1)
k−4

∂ϕ
− h(1)

k−4

∂c
(1)
0

∂ϕ

=
1

ρ∗ + ρ+|y=0

∂2g
(1)
k

∂s2
+ Φ(1)

k ,

∂g
(2)
k

∂τ
− h(2)

k−4

[∂c(0)
0

∂ϕ

∣∣∣
t=0

+
∂c

(1)
0

∂ϕ

]
− h(2)

0

∂c
(1)
k−4

∂ϕ
=

1
ρ∗

∂2g
(2)
k

∂s2
+ Φ(2)

k ,

(3.5)

∂h
(1)
k−4

∂τ
=

4
3(ρ∗ + ρ+|y=0)

∂2h
(1)
k−4

∂s2
+ Φ(3)

k ,
∂h

(2)
k−4

∂τ
=

4
3ρ∗

∂2h
(2)
k−4

∂s2
+ Φ(4)

k ,

∂α
(1)
k−3

∂τ
+ (ρ+|y=0 + ρ∗)

∂h
(1)
k−4

∂s
= Φ(5)

k ,
∂α

(2)
k−3

∂τ
+ ρ∗

∂h
(2)
k−4

∂s
= Φ(6)

k ,

where Φ(j)
k (j = 1, 2, . . . , 6) are the known functions depending on the functions of the boundary layer and of the

first iteration process calculated as a result of problem solution for i = 4, 5, . . . , k − 1. By virtue of (2.3), the
function c

(0)
0 (0, ϕ) has the form

c
(0)
0 (0, ϕ) = v+

y (0, ϕ)(ρ+(0, ϕ) + ρ∗)/ρ+(0, ϕ).

Therefore, problems for the boundary-layer functions in the first and subsequent approximations [see (3.5)] differ
from the problem in the basic approximation [see (3.4)] only by the presence of certain heterogeneity.

In deriving boundary conditions on the curve Γt for the functions of the first and second iteration processes,
we take into account that the boundary conditions on Γt for the case of an ideal compressible fluid have the
form (2.2). By substituting series (2.1) into equalities (2.2) and arranging coefficients of similar powers of ε, we
obtain the boundary conditions on Γt for the functions of the first iteration process at y = 0:

for ε0,
[Dρ0 + a0(ρ0 + ρ∗)(a0 − c(0)

0 )] = 0, [b0] = 0,

(ρ0 + ρ∗)(a0 − c(0)
0 ) = −ρ∗c(0)

0 ;
(3.6)

for εk,

[
Dρk +

∑
i+j+m=k

ajρj(am − c(0)
m ) +

∑
j+m=k

ajρ∗(am − c(0)
m )
]

= 0,

[bk] = 0,
∑
j+i=k

ρi(aj − c(0)
j ) = −ρ∗c(0)

k , k = 1, 2, . . . , N.
(3.7)

We substitute series (3.1) into conditions (1.5). By expanding the functions depending on the “slow” time t in
terms of the Taylor series at the point t = 0 and arranging coefficients of similar powers ε, we find the boundary
conditions for the functions of the second iteration process at s = 0:
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∂g
(1)
4

∂s
= −∂g

(2)
4

∂s
,

∂h
(1)
0

∂s
= −∂h

(2)
0

∂s
, g

(1)
4 = g

(2)
4 ,

(3.8)

h
(1)
0 + v+

y

∣∣∣
y=0

= h
(2)
0 , c

(1)
0 = h

(1)
0 − v+

y

∣∣∣
y=0

ρ∗/(ρ+|y=0);

∂g
(1)
k

∂s
= −

∂g
(2)
k

∂s
,

∂h
(1)
k−4

∂s
= −

∂h
(2)
k−4

∂s
, g

(1)
k = g

(2)
k , k = 5, 6, . . . , N,

h
(1)
k−4 +

∑
i+4m=k−4

τm

m!
∂ma

(1)
i

∂tm

∣∣∣
t=0

= h
(2)
k−4 +

∑
i+4m=k−4

τm

m!
∂ma

(2)
i

∂tm

∣∣∣
t=0

, (3.9)

c
(1)
k−4 = h

(1)
k−4 +

∑
i+4m=k−4

τm

m!
∂ma

(1)
i

∂tm

∣∣∣
t=0
−

∑
i+4m=k−4

τm

m!
∂mc

(0)
i

∂tm

∣∣∣
t=0

.

Here a(1)
i = lim

y→0, y∈Rt
ai(ϕ, y, t) and a

(2)
i = lim

y→0, y∈Qt
ai(ϕ, y, t). In formulas (3.8) and (3.9), the functions of the

first iteration process are known from the solutions of the respective problems.
The algorithm of solving the problem is as follows:
1. The functions ak, bk, c(0)

k , ρk, and pk (k = 0) are found from homogeneous (in the basic approximation)
and inhomogeneous (in the subsequent approximations) Euler equations of an ideal compressible fluid with condi-
tions (3.6) or (3.7), conditions at infinity, and the following initial conditions: v(0)

k = 0 and ρk = 0 (k = 1, 2, . . . , N),
v

(0)
0 = v+ and ρ0 = ρ+ in the region R0, and v(0)

0 = 0 and ρ0 = 0 at t = 0 in the region Q0.
2. Problem (3.5) is solved with decreasing conditions at infinity, zero initial conditions, and conditions (3.9).

The functions g(m)
k+4, h(m)

k , c(1)
k , and α

(m)
k+1 (m = 1, 2 and k = 0) are determined.

3. The procedure is repeated for the subsequent values of k.
The leading terms of the boundary-layer corrections to the solution i.e., the solution of Eqs. (3.4) with

conditions (3.8), zero initial conditions, and decreasing conditions at infinity, are written as [10]

g
(1)
4 (s, ϕ, τ) =

τ∫
0

∞∫
0

[
− h(1)

0 (η, ϕ, t)
∂c

(0)
0 (ϕ, 0)
∂ϕ

+ (h(1)
0 (η, ϕ, t)− c(1)

0 (ϕ, t))
∂v+

ϕ

∂y
(0, ϕ)− (h(1)

0 (η, ϕ, t) + v+
y (0, ϕ))

∂c
(1)
0 (ϕ, t)
∂ϕ

]
×
[
K
(
s− η, τ − t

ρ+(0, ϕ) + ρ∗

)
+K

(
s+ η,

τ − t
ρ+(0, ϕ) + ρ∗

)]
dη dt

− 2
ρ∗ + ρ+(0, ϕ)

τ∫
0

[∂g(2)
4

∂s
(0, ϕ, t)K

(
s,

τ − t
ρ∗ + ρ+(0, ϕ)

)]
dt,

(3.10)

g
(2)
4 (s, ϕ, τ) =

τ∫
0

∞∫
0

[
h

(2)
0 (η, ϕ, t)

(∂c(0)
0 (ϕ, t)
∂ϕ

+
∂c

(1)
0 (ϕ, t)
∂ϕ

)]

×
[
K
(
s− η, τ − t

ρ∗

)
+K

(
s+ η,

τ − t
ρ∗

)]
dη dt+

2
ρ∗

τ∫
0

[
g

(1)
4 (0, ϕ, t)

∂K(s− η, (τ − t)/ρ∗)
∂η

∣∣∣
η=0

]
dt;

h
(1)
0 =

−8
3(ρ∗ + ρ+(0, ϕ))

τ∫
0

[∂h(2)
0

∂s
(0, ϕ, t)K

(
s,

4(τ − t)
3(ρ∗ + ρ+(0, ϕ))

)]
dt, (3.11)
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h
(2)
0 =

8
3ρ∗

τ∫
0

[∂K(s− η, 4(τ − t)/(3ρ∗))
∂η

∣∣∣
η=0

(h(1)
0 (0, ϕ, t) + v+

y (0, ϕ))
]
dt;

α
(1)
1 (s, ϕ, τ) = −(ρ+(0, ϕ) + ρ∗)

τ∫
0

∂h
(1)
0 (s, ϕ, t)
∂s

dt,

α
(2)
1 (s, ϕ, τ) = −ρ∗

τ∫
0

∂h
(2)
0 (s, ϕ, t)
∂s

dt, (3.12)

c
(1)
0 (ϕ, τ) = h

(1)
0 (0, ϕ, τ) + v+

y (0, ϕ)− v+
y (0, ϕ)(ρ+(0, ϕ) + ρ∗)/ρ+(0, ϕ),

where K(s, t) = exp (−s2/(4t))/
√

4πt.
The systems of two integral equations (3.10) and (3.11) are solved by the method of successive approximations

[11]. Let us prove that the integral operator I = (I1, I2), where

I1f1 =
8

3(ρ∗ + ρ+|y=0)

τ∫
0

[
K
(
s,

4(τ − t)
3(ρ∗ + ρ+|y=0)

)
f1(0, ϕ, t)

]
dt,

I2f2 =
8

3ρ∗

τ∫
0

[∂K(s− η, 4(τ − t)/(3ρ∗))
∂η

∣∣∣
η=0

f2(0, ϕ, t)
]
dt,

is contractive in the space of continuous vector functions f = (f1(s, ϕ, τ), f2(s, ϕ, τ)). For definiteness, as a norm
of the operator I, we take

‖I‖ = max (‖I1‖, ‖I2‖), ‖Ik‖ = sup
‖fk‖61

|Ikfk|, k = 1, 2.

By using the change of variables in the integrand, we obtain

‖I1‖ 6
s√
π

∞∫
z1

exp(−r2)
r2

dr =
1√
π
J1, ‖I2‖ 6

2√
π

∞∫
z2

exp (−r2) dr =
1√
π
J2,

where

z1 = s
√

3(ρ∗ + ρ+|y=0)/(16τ); z2 = s
√

3ρ∗/(16τ);

J1 = s

∞∫
z1

exp (−r2)
r2

dr; J2 = 2

∞∫
z2

exp (−r2) dr.

For every ε > 0, there exists a number C > 0 such that J1 < ε and J2 < ε if s
√

3ρ∗/(16τ) > C. In
addition, the operator I does not lead out continuous vector functions from the space of continuous vector functions.
Consequently, the operator I is contractive in the space of continuous vector functions for s

√
3ρ∗/(16τ) > C∗,

where C∗ is constructed on the basis of ε∗ =
√
π/2.

The systems of integral equations (3.10) and (3.11) are solved by the method of successive approximations,
which, according to the principle of contractive mappings, converges.

In the case where the curve Γt is a circle of a certain radius, v+
y = const, v+

ϕ = 0, ρ+ = const, and conditions
(2.3) are fulfilled for t = 0, we obtain

v(0)
ϕ (y, ϕ, t) = 0, v(0)

y (y, ϕ, t) = v+
y , ρ(0)(y, ϕ, t) = ρ+,

and asymptotics of (3.1) are written in the following form (as ε→ 0):

vϕ = 0, vy = v+
y + h

(1)
0 + h

(2)
0 +O(ε), ρ = ρ+ + ε(α(1)

1 + α
(2)
1 ) +O(ε2),

c = v+
y (0, ϕ) + h

(1)
0 (0, ϕ, τ) +O(ε) = h

(2)
0 (0, ϕ, τ) +O(ε).
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Fig. 2

At the same time, in the basic approximation of the method of successive approximations, we have [z =
s
√

3ρ∗/(16πτ) = y
√

3ρ∗/(16πt) /ε]

h
(2)
0 = 2v+

y

∣∣∣
y=0

∞∫
z

exp (−x2) dx,

h
(1)
0 =

64
3(ρ∗ + ρ+|y=0)

√
π√

3ρ∗
v+
y

∣∣∣
y=0

τ∫
0

√
tK
(
s,

4(τ − t)
3(ρ∗ + ρ+|y=0)

)
dt.

The functions α(1)
1 and α

(2)
1 are obtained by formulas (3.12). The compression-wave velocity is finite and, in the

basic approximation, independent of time:

c =
√
πv+

y

∣∣∣
y=0

+O(ε).

The function h
(2)
0 is expressed in terms of an additional probability integral [10]. Figure 2a and b shows

the functions h(2)
0 (s) and h

(2)
0 (τ) at the fixed points τ = τ∗ and s = s∗, respectively. Here h∗ =

√
πv+

y

∣∣∣
y=0

, s0 =

1.92
√
πτ∗/

√
3ρ∗, and τ0 = s2

∗3ρ∗/(4π). It follows from Fig. 2, for example, that s0 = 19.631 (y0 = s0ε
3 = 1.96·10−5)

for ρ∗ = 1, ε = 0.01, and t∗ = 1 (τ∗ = t∗/ε
4 = 108). For ρ∗ = 1, ε = 0.01, and y∗ = 0.005 (s∗ = 5000), we have

τ0 = 5.78 · 106 (t0 = 0.0578). The curves in Fig. 2 allow us to evaluate the order of the internal boundary-layer
thickness [4] and its time evolution.

Conclusions. Asymptotic expansions (with vanishing viscosity) of the problem solution are constructed by
using simultaneous stretching of space and time coordinates in the internal boundary layer of a viscous compressible
fluid. The internal boundary layer is constructed without any additional assumptions of the fluid-flow character.
The leading terms of asymptotic expansions of the problem solution are derived from the system of integral equations
solved by the method of successive approximations. The boundary-layer corrections of higher orders of smallness at
vanishing viscosity are found from a similar system of equations, which is also solved by the method of successive
approximations. Therefore, the suggested modification of the boundary-layer method enables us to construct a
generic algorithm for calculating the functions of the internal boundary layer in a viscous compressible fluid with
any desired degree of accuracy.
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